Fáìlì:Algebraicszoom.png
Fáìlì yìí wá láti Wikimedia Commons, ó sì ṣe é lò nínú àwọn iṣẹ́ ọwọ́ míràn. Ìjúwe lórí ojúewé ìjúwe fáìlì rẹ̀ níbẹ̀ nìyí lábẹ́.
Àkótán
| ÌjúweAlgebraicszoom.png |
English: Visualisation of the (countable) field of algebraic numbers in the complex plane. Colours indicate degree of the polynomial the number is a root of (red = linear, i.e. the rationals, green = quadratic, blue = cubic, yellow = quartic...). Points becomes smaller as the integer polynomial coefficients become larger. View shows integers 0,1 and 2 at bottom right, +i near top. |
| Ọjọ́ọdún | |
| Orísun | I (Stephen J. Brooks (talk)) created this work entirely by myself. |
| Olùdá | Stephen J. Brooks (talk) Source code in C with OpenGL. |
| Àwọn àtẹ̀jáde míràn | leadingcoeff.png |
C source code
Here's the source code. OpenGL graphics stuff is mixed in with maths stuff. The mathematical routines are findroots_inner (arguments given in findroots) and precalc (returns a set of algebraic numbers in the Point structure, x+iy is the value, o is the order of the polynomial that produced them and h is the complexity measure of the polynomial). LSet is just a container object (like Vector<Complex> or Vector<Point> in C++). I is the complex number i. frnd(x) produces a random double-precision number on the interval [0,x). Blocks with FILE *out=fopen(...) are logfiles, can be removed if necessary.
#include <lset.c>
#include <rnd/frnd.c>
char nonconv; int fq[5001];
void findroots_inner(Complex *c,const unsigned o,LSet *pr)
{
Complex r;
if (o==1)
{
r=-c[0]/c[1];
LSet_add(pr,&r);
return;
}
int n; Complex f,d,p,or;
r=frnd(2)-1+I*(frnd(2)-1);
int i=0,j=0; // Complex h[1000];
do
{
if (j==500) {r=frnd(2)-1+I*(frnd(2)-1); j=0;} else j++;
if (i>=5000) {nonconv=1; break;}
/*{
FILE *out=fopen("5000iters.log","at");
fprintf(out,"-----\n");
//for (i=0;i<1000;i++) fprintf(out,"h[%d]=%lg+%lgi\n",i,h[i].re,h[i].im);
fclose(out);
break;
}*/
//else h[i]=r;
i++;
or=r; f=0; d=0; p=1;
for (n=0;n<o;n++,p*=r)
{
f+=p*c[n];
d+=p*c[n+1]*(n+1);
}
f+=p*c[o];
r-=f/d;
}
while (modsquared(r-or)>1e-20);
fq[i]++;
LSet_add(pr,&r);
for (n=o;n>0;n--) c[n-1]+=r*c[n];
for (n=0;n<o;n++) c[n]=c[n+1];
findroots_inner(c,o-1,pr);
}
Complex *findroots(Complex *c,const unsigned o)
{ // c[0] to c[o] are coeffs of 1 to x^o; c is destroyed, return value is created
LSet r=LSet(Complex);
findroots_inner(c,o,&r);
free(c);
return r.a;
}
#include <graphics.c>
#include <rnd/eithertime.c>
#include <rnd/sq.c>
#include <rnd/Mini.c>
GLuint othertex(const unsigned sz)
{
GLuint ret; glGenTextures(1,&ret);
glBindTexture(GL_TEXTURE_2D,ret);
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
//aniso();
int n,x,y,xs=sz,ys=sz;
unsigned char *td=malloc(xs*ys*3); float f;
for (y=ys-1;y>=0;y--) for (x=xs-1;x>=0;x--)
{
n=(y*xs+x)*3;
f=sq((float)sz/2)/(1+sq((float)x-xs/2)+sq((float)y-ys/2));
td[n]=td[n+1]=td[n+2]=Mini(0xFF,f);
}
gluBuild2DMipmaps(GL_TEXTURE_2D,3,xs,ys,GL_RGB,GL_UNSIGNED_BYTE,td);
free(td);
return ret;
}
void putblob(const float x,const float y,const float r)
{
glTexCoord2f(1,1); glVertex2f(x+r*16,y+r*16);
glTexCoord2f(1,0); glVertex2f(x+r*16,y-r*16);
glTexCoord2f(0,0); glVertex2f(x-r*16,y-r*16);
glTexCoord2f(0,1); glVertex2f(x-r*16,y+r*16);
}
typedef struct {double x,y; int h,o;} Point;
LSet precalc(const int maxh)
{
LSet ret=LSet(Point); Point p;
int h,i,j,k,nz,l,sp;
for (i=0;i<=5000;i++) fq[i]=0;
int temps=0,eqns=0,roots=0;
for (h=2;h<=maxh;h++) // Complexity measure sum(|c_n|+1)
{
p.h=h;
int *t=malloc(h*sizeof(int));
for (i=(1<<(h-1))-1;i>=0;i-=2) // 2 step stops t[k-1] being zero
{
t[0]=0;
for (j=h-2,k=0;j>=0;j--)
if ((i>>j)&1) t[k]++; else {k++; t[k]=0;}
temps++;
if (k==0) continue; // k is the order
p.o=k;
//p.o=t[k];
nz=0;
for (j=k;j>=0;j--) if (t[j]!=0) nz++;
for (j=(1<<(nz-1))-1;j>=0;j--) // Signs loop
{
Complex *c=malloc((k+1)*sizeof(Complex));
for (l=k,sp=1;l>=0;l--)
if (t[l]==0 || l==k) c[l]=t[l];
else {c[l]=(j&sp?t[l]:-t[l]); sp<<=1;}
eqns++;
nonconv=0;
Complex *cc=malloc((k+1)*sizeof(Complex)); memcpy(cc,c,(k+1)*sizeof(Complex));
c=findroots(c,k);
if (!nonconv)
for (l=k-1;l>=0;l--)
{
roots++;
p.x=c[l].re; p.y=c[l].im;
LSet_add(&ret,&p);
}
else
{
FILE *out=fopen("nonconv.log","at");
for (l=k;l>=0;l--) fprintf(out,"%+lg*z^%d%s",cc[l].re,l,(l?"":"\n"));
fclose(out);
}
free(c);
free(cc);
}
}
free(t);
}
FILE *out=fopen("stats.txt","at");
fprintf(out,"temps=%d eqns=%d roots=%d\n",temps,eqns,roots);
fclose(out);
out=fopen("histoiters.csv","wt");
for (i=0;i<=5000;i++) fprintf(out,"%d,%d\n",i,fq[i]);
fclose(out);
return ret;
}
WINMAIN
{
int n; gl_ortho=1;
GRAPHICS(0,0,"Algebraic numbers [Stephen Brooks 2010]");
GLuint tex=othertex(256),list=0;
double ox=0,oy=0,zoom=yres/5,k1=0.125,k2=0.5;
SetCursorPos(xres/2,yres/2);
double ot=eithertime();
LSet ps=precalc(15);
LOOP
{
double dt=eithertime()-ot; ot=eithertime();
ox+=(mx-xres/2)/zoom; oy+=(my-yres/2)/zoom;
if (KEY(VK_O)) ox=oy=0;
SetCursorPos(xres/2,yres/2);
if (mb&1) zoom*=exp(dt*3); if (mb&2) zoom*=exp(-dt*3);
if (KHIT(VK_Z)) {k1*=1.3; glDeleteLists(list,1); list=0;}
if (KHIT(VK_X)) {k1/=1.3; glDeleteLists(list,1); list=0;}
if (KHIT(VK_C)) {k2+=0.05; glDeleteLists(list,1); list=0;}
if (KHIT(VK_V)) {k2-=0.05; glDeleteLists(list,1); list=0;}
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glScaled(zoom,zoom,zoom);
glTranslated((xres/2/zoom)-ox,(yres/2/zoom)-oy,0);
if (!list)
{
list=glGenLists(1); glNewList(list,GL_COMPILE_AND_EXECUTE);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE,GL_ONE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,tex);
glBegin(GL_QUADS);
Point *p=ps.a;
for (n=ps.m-1;n>=0;n--)
{
switch (p[n].o)
{
case 1: glColor3f(1,0,0); break;
case 2: glColor3f(0,1,0); break;
case 3: glColor3f(0,0,1); break;
case 4: glColor3f(0.7,0.7,0); break;
case 5: glColor3f(1,0.6,0); break;
case 6: glColor3f(0,1,1); break;
case 7: glColor3f(1,0,1); break;
case 8: glColor3f(0.6,0.6,0.6); break;
default: glColor3f(1,1,1); break;
}
putblob(p[n].x,p[n].y,k1*pow(k2,p[n].h-3));
}
glEnd();
ot=eithertime();
glEndList();
}
else if (list) glCallList(list);
if (KEY(VK_L)) {glDeleteLists(list,1); list=0;}
if (KEY(VK_CONTROL) && KHIT(VK_S)) screenshotauto();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
ccl();
}
}
Ìwé àṣẹ
- Ẹ ní ààyè:
- láti pín pẹ̀lú ẹlòmíràn – láti ṣàwòkọ, pínkiri àti ṣàgbéká iṣẹ́ náà
- láti túndàpọ̀ – láti mulò mọ́ iṣẹ́ míràn
- Lábẹ́ àwọn àdéhùn wọ̀nyí:
- ìdárúkọ – Ẹ gbọdọ̀ ṣe ọ̀wọ̀ tó yẹ, pèsè ìjápọ̀ sí ìwé-àṣe, kí ẹ sì sọ bóyá ìyípadà wáyé. Ẹ le ṣe èyí lórísi ọ̀nà tó bojúmu, sùgbọ́n tí kò ní dà bii pé oníìwé-àṣe fọwọ́ sí yín tàbí lílò yín.
akole
Awọn nkan ṣe afihan ninu faili yii
depicts Èdè Gẹ̀ẹ́sì
copyright status Èdè Gẹ̀ẹ́sì
copyrighted Èdè Gẹ̀ẹ́sì
copyright license Èdè Gẹ̀ẹ́sì
Creative Commons Attribution 3.0 Unported Èdè Gẹ̀ẹ́sì
23 Oṣù Ẹ̀rẹ̀nà 2010
media type Èdè Gẹ̀ẹ́sì
image/png
checksum Èdè Gẹ̀ẹ́sì
c64a47c1f6b36bee273e95949394d0309ec88265
data size Èdè Gẹ̀ẹ́sì
2,103,680 byte
height Èdè Gẹ̀ẹ́sì
1,080 pixel
width Èdè Gẹ̀ẹ́sì
1,920 pixel
Ìtàn fáìlì
Ẹ kan kliki lórí ọjọ́ọdún/àkókò kan láti wo fáìlì ọ̀ún bó ṣe hàn ní àkókò na.
| Ọjọ́ọdún/Àkókò | Àwòrán kékeré | Àwọn ìwọ̀n | Oníṣe | Àríwí | |
|---|---|---|---|---|---|
| lọ́wọ́ | 22:48, 27 Oṣù Ẹ̀rẹ̀nà 2010 | 1,920 × 1,080 (2.01 MB) | wikimediacommons>Stephen J. Brooks | {{Information |Description = Visualisation of the (countable) field of algebraic numbers in the complex plane. Colours indicate degree of the polynomial the number is a root of (red = linear, i.e. the rationals, green = quadratic, blue = cubic, yello |
Ìlò fáìlì
Ojúewé kan yìí únlo fáìlì yí: